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Abstract

3D printing offers a rapid and cost-
effective method for manufacturing parts.
However, print failures occur often due
to the volatile nature of melting plastic.
To address this, we devised a method
for acquiring measurements of printed ob-
jects for quality assurance. By comparing
these measurements with those from the
intended print model, failed prints can be
detected and halted. My method utilizes
an Intel RealSense depth camera to record
videos and produce layer-by-layer recon-
structions of printed parts, from which
measurements can be extracted. Our find-
ings demonstrate the feasibility of this pro-
cess and reveal that extracted X and Y
measurements are accurate. The success-
ful integration of depth cameras for mea-
surement acquisition opens up promising
avenues for future work.
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1 Introduction

In recent years, 3D printing has emerged as a
transformative technology that is used in vari-
ous industries, ranging from manufacturing and
aerospace to healthcare and consumer goods. 3D
printing, also known as additive manufacturing,
is the construction of physical parts from three-
dimensional models. The process begins with the
creation of a digital 3D model using computer-
aided design (CAD) software, which produces a
stereo-lithography (STL) file. Next, this STL file
is run through a slicer, where the object is divided
into 2D layers and translated into G-code instruc-
tions. The resulting G-code file is then provided to
the 3D printer to print.

While there are many types of 3D printing,
this project utilizes Fused Deposition Modeling
(FDM). FDM is one of the most popular and ac-
cessible 3D printing methods, making it an ideal
choice to study (Carolo, 2023). In the FDM
process, a thermoplastic filament, such as Acry-
lonitrile Butadiene Styrene (ABS), is fed into the
printer’s extrusion nozzle. The material is then
heated to its melting point and deposited in lay-
ers onto the bed platform. As the deposited ma-
terial cools and solidifies, it fuses with previous
layers, building a three-dimensional object. A
Voron Switchwire printer and ABS were used in
this project.

Figure 1: Voron Switchwire printer

1.1 Motivation

Failed prints occur frequently, with failure rates
as as high as 20% (Pearce, 2022). This wastes
both time and material. Some examples of prob-
lems commonly encountered are stringing, blob-
s/zits, and warping. Stringing occurs when the
print head leaves thin strands of filament between
different parts of the object. Blobs and zits are im-
perfections left on the surface of the print. Warp-
ing poses a significant problem, as it causes the
printed object to deform or detach from the build
plate due to uneven cooling and shrinkage.

Since prints are often lengthy, ranging from



several hours to even days for large-scale
projects, print failures can be frustrating and time-
consuming. Therefore, incorporating real-time
quality assurance would allow users to stop prints
upon detection of defects, saving time and mate-
rial.

1.2 Intel RealSense D405
The depth camera used in this project is an Intel
RealSense D405, a short-range stereo camera for
close-range computer vision and defect detection.
It utilizes structured light to gather depth informa-
tion. It operates at an optimal range of 7 cm to 50
cm, with object detection as low as 0.1 mm at 7
cm (dep, nd). For this reason, we aim to keep the
camera 7 cm-8 cm away from the object in ques-
tion. The camera is used to record depth and color
videos simultaneously. It outputs a .bag file, which
can be replayed in the Intel RealSense Viewer or
converted to .png images and .csv files using rs-
convert.

2 Data Collection & Techniques

At a high level, the data collection and analysis
pipeline involves video recording, depth acquisi-
tion, layer extraction, object reconstruction, and
measurement comparison. In this section, the pro-
cess is described in further detail.

2.1 Data Collection
To capture depth data of a print, the first step is to
mount a depth camera onto the 3D printer.

Figure 2: Depth camera mounted to the printer

Before starting a print, a custom printerdata
python script was executed. This script collects
the position and timestamps of the print head as it
moves and outputs it as a .csv file. Next, a print
was started. Simultaneously, a stopwatch was
started. This was to keep track of the time elapsed
between when the print starts and when the video
starts for subsequent frame extraction (see section

2.3). After the bed and extruder heated up, a video
recording was started and the time on the stop-
watch was written down.

Since the camera was mounted in front of the
extruder, the object being printed was not auto-
matically within the frame. To address this, a
Gcode macro was integrated during the slicing of
the STL file, adjusting the print head’s position af-
ter each layer. This ensured that after each layer
was printed, the frame was adequately captured by
the depth camera.

After the completion of the print, two data out-
puts were obtained. The first was a .bag file gener-
ated by the depth camera, containing the recorded
video with depth information. The second output
was a CSV file produced by the printerdata script,
encompassing timestamps and the corresponding
print head’s positions.

2.2 Storage
During the data collection process, the use of the
depth camera presented storage challenges. The
Intel RealSense depth camera takes approximately
2MB per frame, making longer videos at higher
frame rates slower to work with. For example, a
30-minute video recorded at 15 FPS takes about
54 GB. To address this, I recorded at 5 FPS and
started the recording after the printer had reached
its target temperature (the camera remained static
and non-relevant information was omitted). As
a result, a video capturing a 12-layer print took
about 10 minutes to record and consumed approx-
imately 6 GB of storage.

2.3 Post-processing
For processing the outputted data, the first step
was to identify the timestamps when the cam-
era paused during the print. Utilizing the CSV
file generated by the printerdata script, a Python
script named get timestamps was implemented.
This script identified instances when the print head
moved to specific coordinates (x = 115 and y =
180), indicating that the camera was paused to
capture the layer. A tolerance of 5e− 14 was em-
ployed to account for minor discrepancies.

Utilizing the identified timestamps, the next
step was to extract the relevant frames from the
.bag file recorded by the depth camera. This was
done by using the rs-convert tool with additional
start and end times parameters.
\rs-convert.exe
-i <PATH.bag>



Gets .bag file
-p <PATH/Name of Files>
Returns color and depth PNG
-v <PATH/Name of Files>
Returns CSV of depth info
-s <Start Time>
Start time in seconds
-e <End Time in seconds>
End time in seconds

To calculate the start and end times, let t be the
timestamp extracted from the CSV and d be the
time recorded on the stopwatch. Then, tstart =
t − d − 0.2 and tend = t − d. This ensured ac-
curate synchronization between the depth camera
recording and the 3D printing process.

Figure 3: Depth and color PNGs extracted from
layer 12 of a cube print

With the extracted frames, the next stage fo-
cused on converting the 2D frames into 3D XYZ
coordinates, also called ”deprojection”. This con-
version was accomplished by applying the Brown-
Conrady distortion model1 and the camera intrin-
sics, which were acquired using the rs-sensor-
control tool. The intrinsics for the stream profile
used in this project’s experiments are as follows:

Video Stream: Z16 848x480@ 5Hz
Principal Point : 430.037, 240.698
Focal Length : 429.084, 429.084
Distortion Model : Brown Conrady
Distortion Coefficients : [0,0,0,0,0]

After deprojection, the topmost layer of each
frame was extracted. This was achieved by select-
ing the points that fall within a specified z range (in
meters), with experimental values chosen based

1More about deprojection in Intel RealSense can be
found at https://dev.intelrealsense.com/docs/projection-in-
intel-realsense-sdk-20.

on visual inspection of the background and top-
most layer. The zmin used was 0.0765. For layers
below 10, zmax = 0.0777 + ((layer number −
1) ∗ 0.0001), while for subsequent layers, zmax =
0.0785.

Subsequently, each layer was consolidated into
a single CSV file of points. This concatenated file
was then plotted as a point cloud representation of
the printed part.

Finally, measurements were acquired from the
point cloud using either the Euclidean distance
formula or the point picking tool in CloudCom-
pare. Using a caliper, real-life measurements of
the part were recorded and compared with the
point cloud measurements.

3 Results

By following the process outlined above, 3D re-
constructions of prints were successfully gener-
ated. The data collected and processed came from
the first 12 layers of a Voron Design Cube with
30% infill.

Figure 4: 3D reconstruction of 12-layer Voron
Design Cube, 30% infill

During the layer extraction process, we ob-
served imperfections on the print, which were
clearly evident in the generated point clouds.
Specifically, layer 5 of the print displayed notice-



able blobbing on the bottom left, which was re-
flected in the reconstruction.

Figure 5: Imperfection in layer 5 visualized in
point cloud

Similarly, in layer 6, there was observed blob-
bing on the top right, also captured in the recon-
struction.

Figure 6: Imperfection in layer 6 visualized in
point cloud

To evaluate the accuracy of the reconstruction,
the point-picking tool in Cloud Compare was used
to extract X and Y measurements from the point
cloud. These measurements were then compared
with caliper measurements obtained from the real-
life object.

Figure 7: X measurement comparison

Figure 8: Y measurement comparison

3.1 Infill

During analysis of the reconstruction, a notable
observation was that the infill was not clearly visi-
ble in the point cloud. To gain a better understand-
ing of this issue, we decided to conduct a follow-
up experiment by printing the first 12 layers of a
Voron Design Cube with a reduced infill of 10%.
In this reconstruction, the infill was far more ap-
parent and distinguishable.

Figure 9: 3D reconstruction of 12-layer Voron
Design Cube, 10% infill

However, this raised the question of whether
the infill measurements obtained from the cam-
era were accurate, and if there was a potential is-
sue with the camera rather than the reconstruction
pipeline. To address this, we devised a method to
determine the camera’s infill accuracy. Examining
the 12th (and last) layer, we selected pixels from



the topmost layer and pixels within the infill holes,
then calculated the depth difference between them.
This provided us with the camera’s infill measure-
ment, which we then compared to the real-life in-
fill measurement.

The actual infill measurement of the part, mea-
sured with a caliper, was 1.2 mm. In the bottom
left, the infill measurement from the camera was
79.4 − 79.1 = 0.3mm, while in the bottom right,
the infill measurement was 79.5−78.3 = 1.2mm.

Figure 10: Varying infill measurements from
camera, 10% infill

These results indicate that the camera’s infill
measurements were inconsistent and inaccurate.
This finding prompted us to address the limitations
of our approach and identify future investigation,
as will be discussed in the following section.

4 Conclusion & Future Work

The results of this project demonstrate the feasi-
bility of utilizing a depth camera for generating
3D reconstructions of printed parts. Moreover, the
X and Y measurements extracted from the point
cloud have shown to be accurate. However, the
discrepancy in infill measurements indicate that
future investigation of the Z measurements is re-
quired.

Several potential factors may contribute to the
discrepancy in Z measurements. One possible fac-
tor is inconsistent lighting, as a visible glare was
seen on the print bed during the printing process.
Additionally, surface reflectivity of printed parts
may lead to the scattering of infrared light. Since
the camera relies on structured light, these factors
might complicate its depth determination process.

A higher infill percentage could also pose chal-
lenges in distinguishing between the surface and
the infill, and variations in bed tilt might result
in different areas of the part being at varying dis-
tances from the camera.

Other future work includes reducing back-
ground noise in the reconstructions. This could in-
volve exploring the experimental extraction range
to optimize the data captured during layer extrac-
tion. Looking ahead, converting post-processing
into a real-time pipeline would enable measure-
ments to be acquired during a print. By doing
so, users would be able to make immediate adjust-
ments and optimize printing outcomes.

In conclusion, continued research and develop-
ment are needed to improve the accuracy of depth
measurements and to streamline post-processing
techniques. Current findings, however, offer
promising insights into using depth cameras for
3D reconstructions of printed parts.
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